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SUMMARY 

The probability that within a future large second sample no 

failures will occur before the expiration of a safe service life 

estimated from a small first sample and the probability that the 

proportion of all future observations failing before the estimated 

safe service life is smaller than a given proportion, are the two 

measures of safety that we adopt here. 

Assuming the logarithm of the fatigue life is normal with 

known variance, we derive formulae for these measures of safety. 

Setting the safe life as some fraction of the mean estimated by 

the first sample, we then compare the influence of other parameters 

on these measures of safety. 

From this assumption It is shown that one has virtually as 

high an assurance of safety, measured by the first criterion, when 

using only the minimum of the first sample,as one does by using all 

the observations in the first sample.  If one uses the standard 

second criterion, namely, the confidence level of a lower tolerance 

bound, as a measure such an advantage is not retained. 
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1.   INTRODUCTION 

Suppose we have a structural component In an airplane which Is 

subject to'failure from fatigue, perhaps due to the cyclic loading of 

the ground-alr-ground cycle, to acoustic loading, or to any other well- 

defined phenomenon. We ask what estimate we can make of a safe service 

life, or more specifically, the lower quantities of the distribution 

of the time until failure, from a first sample such as the simulated 

testing of a small number of specimens, or from the observation of the 

first few units of production. 

The important question with which we concern ourselves is, what is 

the probability that the weakest component within a fleet of airplanes 

to be produced, or coming into service, will fail before a certain time 

established by derating the life estimated from the first sample.  The 

problem is to determine the derating procedure so there i§ little proba- 

bility of failure within the future fleet. 

We let Xi   1-1,...,m be the 1  failure time resulting from the 

first sample, and we let Y    1-1,...n be the i' failure time from 
i,n 

the second sample of components In service. We assume that the initial 

sample of lives, simulated in the laboratory, or the first service lives 

have the same distribution as the service lives later on, the logarithm 

of which we assume is normally distributed. We label the common distri- 

bution of life with F. 

» 
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From the first sample taken, we have the data X ■ (X1 mf'»xm m) 

and a given derating function d which we use to obtain the derated (safe) 

life d(X). The probability that no failures will occur in the fleet be- 

fore the safe life we call the fleet assurance, labeled a; it is given by 

(1.1) ' a - P[Y1>n > d(£)] - |{l-F[d(x)]}
n dG(x) 

A 

where G is the Joint distribution of the sample X. 

The probability that a proportion of at least ß of all future ob- 

servations will not fail before the derated life we call the oonfidenaea 

labeled y» which is 

(1.2) Y - P{l-F[d(X)] > BK 

Clearly in this case the derated life is just a lower tolerance bound for 

the population described by the distribution F,  and the fleet size n 

does not enter in. 

We chose the function d to be some fraction of an estimate of the 

mean. Our problem is to study the influence of various parameters, such as 

sample size and variance, on the measures of safety, while keeping in mind 

the economic desirability of using as few of the first few ordered obser- 

vations as possible. 

2.   EVALUATION OF THE SAFETY FACTORS 
USING FIRST ORDERED OBSERVATIONS 

We assume throughout that the logarithm of the fatigue life is nor- 

mally distributed with unknown mean p and known standard deviation a. 
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and the derating function Is some fraction of the estimated mean life. 

Hence from (1.1) we have 

(2.0.1) a - ?[Y        > pv]     , for some 0 < p < 1, 
j. ,n 

2 
where v - exp{u + a /2}  Is the mean (expected) life of a component and 

v Is the estimate of v made from X. 

A current procedure Is to take a small sample from simulated labora- 

tory testing, perhaps m ■ 2 or m ■ 3, and set 

m 

(2.0.2) y = - Y An X.  . v    ' m ^J    l,m 
1 

As we shall prove later on,  In this case, we have for the two safety 

Indices    a,    Y 

00 

(2.0.3) a 'J   0na +-f= )  d&x) 
_co / 

(2.0.4) Y - 0[/^ U - ;ß)], 

where 

(2.0.4.1) - c -ZZ-Z + Z *(CR)  " B 
a       2 P 

with 0 the cumulative distribution function of the standard normal, 

defined by 

(2.0.5) *(,) . f ^ exp |. fi] 
-oo y/  2TT 
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Notlce that neither a nor y    depend upon p, and that as 

m grows large a approaches the value 0 (C)» and y    increases to the 

value one if C > C0 and decreases to zero if C < Cfi.  To obtain some p p 

idea of the magnitude of these indices we take n ■ 200, P " "^» o m A6 

(this last is equivalent to taking the standard deviation of the common 

logarithm of life to be equal to .2). We then have £ ■ 2.95,  and from 

table II with m ■ 3, we see that a ■ .64, and by taking ^0 - 2.326 
p 

(i.e.  6 ■ .99) we can compute that y  ■ .86 from tables of the standard 

cumulative normal distribution. 

A natural quest! ;n to ask is:  If we increase m and obser re only 

the first of the ordered observations (or perhaps the first few), can we 

increase a or yl     If the answer is yes, by how much? 

In order to obtain as much generality as possible, we consider ob- 

serving only X.  ,...,X    where r may be 1 up to m. Thus if r « m, i^m     r,m 

we have the entire sample.  If r ■ 1 we observe only the life of the 

weakest component out of the m simulated lives. 

Following our basic assumption, we let 

Z   - An X i - 1 r l,m      i,m 

Now we state 

THEOREM 1. If  Z7 ....,Z   are the first   r   of   m   ordered inde- 
O 

pendent normal observations with unknown mean    y   but known variance   a , 

the maxinrm likelihood estimate   y   of the mean is 

mem 
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(2.1) \i   =  Z -f O • T 

where    T   ie the solution of [2,1,3], 
rtm 

Proof. The first r of m ordered normal observations have the 

joint density on - « < z < ... < z  < ». 

(2.1.1) ÄH^n^-n 
where $    Is the density of (2.0.5). 

Then letting K be a constant Independent of y, and L be the 

logarithm of the Joint density (I.e., the log-llkellhood), we have 

(2.1.2) 

r  z _ 2 
L-K-2^(V-) + (m-D^^) 

3L  ^ / V1* \ ,  (m-r)  J^A    n ° T; ■ 2 (—)-^ ♦(-)■ o 

Letting i|;(x) ■ (j)(x)/0(x), T ■ (y-z )/a and by adding and sub- n 

tractlng z  In the summation we see (2.1.2) Is equivalent with 

(2.1.3) ( 

r 

m-r) »KT) - rt - 2, 
z -z. r 1 

1-1 

We call the unique solution    T which exists by the decreasing mono- 

toniclty of    ty. 
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If the graph of IP(T), as given in figure [1], is used, an approxi- 

mate solution to (2.1.3) can be readily found.  The tables of reference [2], 

can be used to determine the root more accurately. 

Now we state the 

COROLLARY 1. If   r = 1    then    T   is a constant depending only 

upon   m   and is the solution, call it    i 3    of the equation in    t 

nt) a 1 
t       m-1 

and 

M = Z.  ■/• a • T . 
l3m m 

We present a table of values of    T      in table I.     And of course, we can 
in 

obtain the result of (2.0.2): 

m 
COROLLARY 2.    If   r = m3     then    T        = - ~   S^Z      -Z.    ) —-~~——       " rriym ma    **    m3m   t3m 

and 

7 m 

M       m3m m3m     m ^  t.m 
1 

It  follows from (2.0.1)   that 

a - PUnY.       > Jlnp + y + a2/2] 
i ,n 
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(2.2.1) a - P[inY1>m > Änp + Zr>m + a  •  T,.^ + o2/2I. 

Letting    5    be as defined in (2.0.4.1)  and setting 

(2.2.2) "!,„-£*"*!.„■      Vl,m"3-Zl,m       1-1 0 

we have, letting A  (T) be the left hand side of (2.1.3), r,ni 

r 
(2.2.3) a - Plu.   n  > V       -C + A'

1
,,,   [2(Vr   -V      )|| I  l,n        r,m r,m  imm    r,u    l,mj| 

which we can express in integral form as 

(2.3)    a-   f f^-V^m     I^VVll      ^v'"^    Uv± 
I r 1 

where h(v1,...,v )  is the joint density in (2.1.1) with o - 1. 

Unfortunately this integral is not easily simplified in the general 

case. But to obtain some idea of its behavior, we give the explicit ex- 

pressions for the two extreme cases r - 1 and r » m. 

For r » 1 we have from (2.2.3) 

a - P[U   > V  -4+T ] i,n   i,m   m 

.00 

SI 

"—00 

/VU-V-Tm)  [l-*(v)]
m_%(v)dV. 

—00 

By using the fact that    <J)    is even we obtain a function of    5,    say, 

00 

A^O  ' m /■0n[C-Tm+x]0m"1(x)4.(x)dx. 
-00 

For    r ■ m,    we have from (2.2.3) 
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r 1 a 

l,n     m ^ i,m 
1 

and In the same manner as above we have a function of C, call It 

00 

-00     /m 

which we recognize as that given In (2.0.3). 

The comparison of the values of A1 and A.  for n = 200,  m = 5, 

Is given In figure 2.  We note that for a given value of ^ AAO   >  A^Cc) 

for 5 < 3, but the reverse Inequality holds for C > 3. However, there 

Is not much difference considering that we use only the minimum observation. 

A tabulation of A2(C)  is given in table II for m and n.  As a 

simplification we also present a tabulation not of A.(C) for various 

values of m and n but of 

00 

(2.4) A3(p) = / 0n(p+x)d0m(x) 
— 00 

where p ■ C-T . 
m 

A short tabulation of    A^(p)    is given in table III.    This accomplishes 

our study of fleet assurance. 

Now we turn to the question of confidence in these two cases.     By 

definition (1.2) 

Y    - P[F(pv)   < 1-ß] 

2 where    F    is here the log-normal distribution with parameters    \i    and    o  . 
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Now 

Hence by letting C and CQ ^e as defined in (2.0.4.1) 
P 

A 

(2.5)     '     Y - P [^ < ? + ^.J 

-P|Vr.» + Ar!«[i(Vr.m-VlJ<? + tlJ 

This can also be expressed as an integral but we give only the two cases 

r ■ 1, r ■ m. 

For r « 1 

y • w1>m< i - im-1$] -1 - n -*a - ia- ^f 

(2.6) Y - 1 -#m(Tm+ t;6 - C) 

For    r * m    we obtain the result stated In (2.0.4). 

(2.7) Y -   0[ /ia -  ;ß)] 

Again, for purposes of comparison, we take the two functions 

B^-l-^- C + Cß) 

B2(0 -*[>/5(e - Cß)l. 

which we present in figure 3 for m ■ 5t  ß ■ .99. 

It is clear that B2(0 is to be preferred, it being the greater for 

almost all values of  £. 
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3.      SAFETY FACTORS  IN THE CASE SOME INITIAL 
OBSERVATIONS ARE LOST 

In order to obtain a bit more generality we consider the estimation 

problem In the case when the first few operations may not have been ob- 

served.    This could,  for example, be the case when the phenomenon under 

consideration is the occurrence of a fatigue crack of a specified dimen- 

sion, and at a certain time regular inspection reveals that several of 

these have already occurred.    Hence we consider observing only 

X       X where    1   < s  < r   < m.     Thus  if    s ■ 1,  r « m    we have the s,m' r,m 

entire first sample.       If    r » s * 1    we observe only the life of the 

weakest component of the first sample. 

THEOREM 2.        If   Z     ,...., Z for    1  < s < m   are the    (r+l-a) 

ordered observations of   m   independent normal observations with unknown 

2 
mean but known variance    o s    the maximum likelihood estimate    y    of the 

mean is 

y = Z       + a'Tfs^rjm) rjm 

where   T(sirim)    is the solution of equation (3.1). 

Proof.        Proceeding exactly as before  the    s        through the    r 

ordered observations have the joint density on    <*> < z    <«»»<z     <« 
s r 

i-s a (m-r)!(s-1)! 

Using the notation of Theorem 1 we obtain 
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whlch Is equivalent with 

(3.2)        (m-rHCx) - (s-l)^-2-^ -T) - (r-s+Dt -   Tf""1^)- 
a Ä 

We call the solution of  (3.2)    T(s,r,m),   which exists uniquely since 

the left hand side is a decreasing function of    T.|| 

Also,  note that    T(l,r,m)  - T 
r»ni 

As before, the graph of ^ as given in figure [1] can be used to 

obtain an approximate solution to (3.2) and the tables of reference [2] 

can be utilized to obtain the root more accurately. 

The problem of obtaining a simple formula for the assurance or confi- 

;        dence in this general case seems rather difficult. But there follows 
I 
F immediately from Theorem 2 the 

I 
A 

COROLLARY 3.       If   s = r   then   T(rar3m)    ie a constant which depends 
I 

only upon   ramt    call it    t      .    which is the solution of the equation in    t 
X • fit 

(m-r)^(t) - (r-im-t) - t = 0 

and 

A 

(Z.2) M = Z        ■/■ O't 

Now if we want to obtain an expression for the assurance, we have 
A 

directly from (2.2.1) by replacing T    by t    and using the notation 
r,m     r,m 

of (2.2.2) 

a - P[U. M > -5+t  +V  ] 
l,n   v r,m r,m 
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Slnce    V has the density defined by 

r^)0r_1(v)   [l-0(v)]m-%(v) <   V   <   oo 

we obtain 

(3.4)     a - r^]   f ^U-t^+x) 0r'1(-x) 0m"r(x)   *(x)dx. 

A table of this Integral would involve three parameters so It would 

seem more practical to reserve computation for those cases of specific 

Interest.    No tabulation Is made. 

For the confidence In this case we have from equation  (2.5) 

Y - P[(Z     -W't      -M)/a < g + t      ] r,m        r,m i-p 

r,m r,m        i-p 

But since the distribution of    V Is given by 
r,m    0     J 

r-1 

< xl - 1 - 
r,m 

m-r 

P[V „^ < x] - 1 -  ^ /-^J/.^ n ^,^1™^ 

j-0v:,/ 

m-r 

j-0VJ/ 
*j (-x) ^ (x) 

we can obtain values of the confidence y by using first tables of 0 

(reference [2]) and then the binomial tables (reference [1]) to calcu- 

late it. 

We call attention to the further specialization which occurs when 

the inspection reveals only the strongest item. 
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COROLLARY 4.        If   s = r = m   then in (3.3),    t       = -t     where 

T     wie defined in Corollary 1 and given in table 1. 

In this special aase 

00 

a = mj   0n('^Tm-x;*m"1(x)t(x)dx 

Y = P[Vm m < K+i+t.  J 

Y=/[5+VW- 

: 
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4.  NUMERICAL COMPARISONS 

We make the e:s»jm^cion throughout that o ■ .46. This Is equivalent 

to taking the stai i.^drd deviation of the common logarithm of the life to 

be equal to .2. 

Let us see, If we derate by fraction P = T and we have a fleet 

size of n ■ 200, whether we have more assurance by choosing the minimum 

of five observations or whether we have more assurance by using all three 

observations. 

Take m»5, r » 1, P=T; then C = 2.95, and for n « 200 

we find from table I that A. (2.95) = .66, which is about twice the value 

of A„(2.95) for m = 3, which we discussed on page 4. 

Suppose we want the assurance to be .90 when we use the minimum of 

five observations. We ask what value of p should we take? From table III 

we see that if A3(p) « .90 then p = 2.6 since p **  E, - r,-,     £; = 3.66 

by table I. Now from (2.0.4.1) we have 

(4.1) p = exp {-oS - 0
2/2} 

and since o = .46 

-1.79   .,  1 
p = e     = .16 = T 

To show the sensitivity of the assurance to a, let us suppose that 

o ■ .2,  Instead of .46.  From equation (4.1) above we obtain 

-.75   ..,  1 p - e    - .47 ■ j . 
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The tables which are provided are of course very sketchy and are 

included only to give an idea of the magnitude of the functions A.  and 

A» for a few selected values of n and m. However, the programs which 

we used to compute these functions are available by writing to the author, 

and would-be provided upon request. 
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Graphs for obtaining the solution of the maximum likelihood estimate 
of the mean when only the weakest component is obser\ ' 
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Figure 2 

Graphical comparison of the assurance that no failures will occur 
in a fleet of size n ■ 200, using only the minimum value out of 
m » 5 observations for A, (O .  and all five observations for A^O. A2(0. 



m 

-18- 

.u s" 
/ 

r 

/ 
/ 8 1 

1 
1 6 

t 

/B2(f) 
/ 

/ 

/Hi) 
A 

i 
/       / 

2 r 
/ 

*t 

Figure 3 

Graphical comparison of the confidence that no more than one percent 
failures will occur within the future fleet when using only the mini- 
mum of m = 5 observations for B-(O with the confidence when using 
all five observations for B0(0 
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TABLE I 

T  the solution of the equation 
m t 

iül. i 
m-l 

in m 

2 0.506 

3 0.765 
A 0.936 
5 1.062 
6 1.160 
7 1.241 
8 1.309 
9 1.368 

10 1.420 
11 1.466 
12 1.508 
13 1.545 
14 1.580 
15 1.611 

m 

16 
18 
20 
22 
24 
26 
28 
30 
35 
40 
45 
50 
55 
60 

m 

1.641 
1.693 
1.740 
1.781 
1.819 
1.853 
1.884 
1.912 
1.975 
2.029 
2.076 
2.117 
2.153 
2.187 

Interpolation may be used between 15 and 30 to obtain two-decimal- 
place accuracy. 
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1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.00 

1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 
4.25 
4.50 
4.75 
5.00 

TABLE II 

A2U) - /"V(C +
2F)d0(x) 

n » 200 n - 200 n » 200 
m «  3 

A2(0 

.005 

.014 

.034 

.074 

.142 

.242 

.369 

.511 

.649 

.768 

.859 

.921 

.959 

.981 

.991 

.996 

.999 

m »  5 

A2(0 

.001 

.004 

.014 

.042 

.102 

.205 

.349 

.516 

.676 

.805 

.894 

.948 

.976 

.990 

.996 

.999 

.999 

m = 10 

A2(C) 

.000 

.000 

.003 

.017 

.061 

.162 

.326 

.525 

.708 

.843 

.924 

.967 

.987 

.995 

.998 

.999 
1.000 

n = 400 n = 400 n =• 400 
m =  3 

A2(0 

.001 

.005 

.014 

.035 

.077 

.147 

.251 

.382 

.526 

.666 

.784 

.872 

.930 

.965 

.984 

.993 

m =  5 

A2(0 

.000 

.001 

.004 

.014 

.043 

.105 

.213 

.363 

.534 

.696 

.822 

.907 

.956 

.981 

.992 

.997 

m - 10 

A2(0 

.000 

.000 

.000 

.003 

.016 

.062 

.167 

.341 

.547 

.732 

.862 

.937 

.974 

.990 

.996 

.999 
.997 .999 1 .000 
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TABLE III 

00 

A.(P) -   /'0n(p+x)d^n(x) 

n » 400 n "^ 400                      n - 400 
m ■ 10 m«20                       ma5 

p A3(p) A3(p) A3(p) 

0. 0.024 0.048 0.012 
0.25 0.049 0.094 0.025 
0.50 0.092 0.170 0.048 
0.75 0.160 0.283 0.086 
1.00 0.260 0.427 0.145 
1.25 0.388 0.587 0.229 
1.50 0.533 0.734 0.337 
1.75 0.675 0.849 0.463 
2.00 0.797 0.924 0.595 
2.25 0.886 0.965 0.718 
2.50 0.942 0.986 0.820 
2.75 0.974 0.995 0.895 
3.00 0.989 0.998 0.944 
3.25 0.996 0.999 0.973 
3.50 0.998 1.000 0.988 

n - 200 n - 200 n « 200 
m=10 m=10 m=5 

P A3(p) A3(p) A3(p) 

0. 0.048 0.091 0.024 
0.25 0.089 0.165 0.047 
0.50 0.156 0.273 0.083 
0.75 0.252 0.414 0.141 
1.00 0.376 0.569 0.222 
1.25 0.517 0.716 0.327 
1.50 0.658 0.833 0.447 
1.75 0.781 0.912 0.580 
2.00 0.873 0.958 0.701 
2.25 0.933 0.982 0.806 
2.50 0.968 0.993 0.883 
2.75 0.986 0.997 0.937 
3.00 0.994 0.999 0.967 
3.25 0.998 1.000 0.985 
3.50 0.999 1.000 0.992 
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